Arduino Nano

Dette er et kompakt board ligesom Arduino UNO med en ATmega 328

Arduino Nano er en mindre version af Arduino Uno, designet så det er nemt at få ned i et breadboard.

Arduino Nano bruger Mini-B USB kabel.

 

Arduino Microcontroller

Microcontroller ATmega328
Architecture AVR
Operating Voltage 5 V
Flash memory 32 KB of which 2 KB used by bootloader
SRAM 2 KB
Clock Speed 16 MHz
Analog I/O Pins 8
EEPROM 1 KB
DC Current per I/O Pins 40 mA (I/O Pins)

 

Generalt

Input Voltage

7-12 V

Digital I/O Pins

22

PWM Output

6

Power Consumption

19 mA

PCB Size

18 x 45 mm

Weight

7 g

 

schematic

Eagle files

EC

RoHS

 

Power, strøm

Arduino Nano får strøm via mini-B USB stikket, 6-20V ekstern strømforsynt (pin 30) eller 5V ekstern strømforsynt (pin 27). Strømkilden vil automatisk blive valgt ud fra den højeste spænding.

 

The Arduino Nano can be powered via the Mini-B USB connection, 6-20V unregulated external power supply (pin 30), or 5V regulated external power supply (pin 27). The power source is automatically selected to the highest voltage source.

Hukommelse

ATmega328 har 32 KB, udover de 2 KB som bliver brugt til bootloaderen. ATmega328 har 2 KB SRAM og 1 KB EEPROM.

The ATmega328 has 32 KB, (also with 2 KB used for the bootloader. The ATmega328 has 2 KB of SRAM and 1 KB of EEPROM.

Indgange og udgange

Hver af de 14 digitale pins på Arduino Nano kan bruges som input eller output, ved at bruge pinMode(), digitalWrite(), og digitalRead() funktionen. De kører på 5 volt. Hver pin cab give eller modtage et maksimum af 40mA og har en internal pull-up modstand (som er frakoblem som standard)af 20-50kOhm. Nogle pins har tilmed specielle funktioner:
 
Each of the 14 digital pins on the Nano can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:
 
  • Seriel: 0 (RX) og 1 (TX). Bliver brugt til at modtage (RX) og sende (TX) TTL serial data. Disse pins er forbundet til de tilsvarende pins af FTDI USB-til-TTL Seriel chip.
  • Eksterne Interrupts: 2 og 3. Disse pins kan indstilles til at trigge en interrupt på en lav værdi, en stigning eller en negativ kant, eller e ændring i værdien. Se flere detaljer under attachInterrupt() funktionen.
  • PWM: 3, 5, 6, 9, 10, og 11. Giver 8-bit PWM output med en analogWrite() funktion.
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Disse pins supporterer SPI kommunikation, som, selvom den er understøttet af det underliggende hardware, endnu ikke er inkluderet iArduino sproget.
  • LED: 13. Dette er en indbygget LED tilsluttet til den digitale pin 13. Når denne pin har en HØJ værdi, er LED'en tændt, når den er LAV, er den slukket.

 

  • Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.
  • External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
  • PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language.
  • LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off. 
Arduino Nano har 8 analoge indgange, hver giver 10 bits opløsning (i.e. 1024 different values). Som standard måler disse fra jord til 5 volts, selvom det er muligt at ændre den øvre grænse ved at bruge analogReference() funktionen. Analog pins 6 og 7 kan ikke bruges til digital pins. Ydermere, har nogle pins specielle funktioner:
 
 
The Nano has 8 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the analogReference() function. Analog pins 6 and 7 cannot be used as digital pins. Additionally, some pins have specialized functionality:
  • I2C: 4 (SDA) og 5 (SCL). Support I2C (TWI) kommunikation ved at bruge Wire library (dokumentation på Wiring website). 
Der er også nogle andre pins på boardet:

  • AREF. Reference spænding til de analoge indgange. Bruges med analogReference().
  • Reset. Ved LAV spænding resettes mikrokontrolleren. Bruges typisk til at tilføje en reset knap til shields ved at blokere den på boardet.

  • I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the Wiring website). 
There are a couple of other pins on the board:

  • AREF. Reference voltage for the analog inputs. Used with analogReference().
  • Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

Kommunikation

Arduino Nano har en række af muligheder for at kommunikerer med en computer, en anden Arduino eller en anden microcontroller. ATmega 328 giver UART TTL (5V) seriel kommunikation, som er tilgængeligt på den digitale pins 0 (RX) og 1 (TX). FTDI 232RL kommunikerer

The Arduino Nano has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega328 provide UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial communication over USB and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Nano's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus. To use the SPI communication, please see ATmega328 datasheet.

Programming

The Arduino Nano can be programmed with the Arduino software (download). Select "Arduino Duemilanove or Nano w/ ATmega328" from the Tools > Board menu (according to the microcontroller on your board).

The ATmega328 on the Arduino Nano comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol.

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header using Arduino ISP or similar.

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the Arduino Nano is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Nano is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Nano. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.